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ABSTRACT

A new method for initializing the memory registers of Infinite Impulse Response
(IIR) filters is presented. This method is shown to significantly reduce the initial tran-
sients which accompany the filtering of finite-length data sequences. Unlike previous
methods, the proposed method makes no a priori assumptions regarding the input signal.
Therefore. the method applies equally well to a variety of IIR designs and applications.

The method does require a leading segment of the input data for initialization
computations before filtering can begin. For this reason. the method is best suited for
signal-processing applications in which batch processing of the data is employed. In
particular, the method could prove very useful in situations where data is at a premium
and only short-length sequences are available, because almost all data is usable after
filtering. Applications using sequential-processing of data can be accommodated when
delays at the beginning of a processing segment can be tolerated.
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1. INTRODUCTION

Comparisons between Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters are
often based on the computational complexity' required to achieve a given frequency response. For
applications requiring filters with sharp cutoffs (narrow transition regions), IIR filters are generally
considered better because of the large filter length required in an FIR implementation. This distinction
also occurs with (or is compounded by) applications in which the unfiltered data sequence has a short
overall length or comprises short-length non-contiguous segments. 2 In such cases, FIR filters with sharp
cutoffs can become impractical, requiring too great a proportion of the data for initialization of the filter
taps. Because the all-zero portion of a comparable IIR filter is considerably shorter in length, an IIR filter
could conceivably be used in situations with small-sized data sets. Unfortunately, the transient response
of an IIR filter distorts the output of the filter on startup, rendering the situation similar to that of the FIR
filter (i.e., an initial segment of data is consumed to initialize the filter: in the case of IIR filtering. output
sampling is delayed until transients are significantly reduced). For an FIR filter, the amount of data lost is
equal to the filter length N: by one optimistic rule of thumb, a comparable IIR filter would require
approximately the same N samples to significantly reduce its transients. To deal with this problem, it is
often suggested that state initialization (i.e., initialization of the IIR memory registers) be used to reduce
the IIR startup transients. The most common method. which is further described below, is based on
approximating the unfiltered signal by a step input. This report presents a new alternative initialization
method derived from a state-variable description and vector-space view of the transient problem. In
contras! io the step-input approximation. this new method is equally suited to all type IIR structures (i.e..
low-pass, bandpass, or high-pass).

Fletcher and Burlage, [2] and 131, working in the context of radar-clutter filtering3 for Moving
Target Indicator (MTI) radar, proposed a method for improving the performance (i.e., reducing the
transients) of IIR implementations in sampling situations as described above. However. their method is
specific for IIR filters designed to filter low-frequency ground-clutter targets: it assumes that clutter-
return signals can be modeled as step inputs with magnitude equal to that of the first recorded data
sample (referred to as step initialization). Assuming that the ground-clutter step dominates the desired
input signal. an appeal to the final-value theorem for Z-transforms can be used to calculate an approxi-
mation to the steady-state values of the filter memory registers. In the resulting procedure. filter memory
registers are loaded with a scaled version of the leading data sample (the scaling factor is predetermined
by the filter coefficients) prior to the normal filtering of the data. The method's simplicity is clearly an
advantage, but Figure 1 illustrates the limited extent to which the filter's average-output-magnitude
frequency response can be improved. As can be seen from the figure. the response obtained using the
initialization method is still far from the desired steady-state response; in particular, the inability to
match the extent of the stop-band width is a significant deficiency. Note that neither delay sampling nor
delay sampling after initialization offered a substantial improvement toward approximating steady-state
performance.

Development of the initialization method presented in this report was motivated by Lincoln Labora-
tory's work with high-pass filters and clutter removal for pulsed-Doppler radars. An initial objective was
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Figure 1. The average-output-magnitude frequency response of a four-pole elliptic IR filter (after Fletcher and

Burlage). The dotted lines illustrate average-magnitude responses for a zero-initializedfilter; responses were computed

by summing the magnitudes of output samples 0-31 and 32-63. Therefore. the lower of the two plots (from samples 32-
63) represents the average response profile obtained after delay-sampling 32 samples. Dashed lines represent the

corresponding profiles for the step-initialization filter. The solid curve shows the steady-state magnitude response of the

filter. Responses are plottedforposititefrequencies out to a frequency equal to one half the Nyquist raluc.

to improve upon the quantitative results obtainable by step initialization (Figure 1). However. this new

method is considered to be of general interest because it makes no a priori assumptions regarding the
content of the input signal or filtering application; the results apply equally well with any design 11R
filter. However, the improvements realized with this new method are obtained at the cost of additional
computations- in contrast to using only the first data point for initialization, the proposed method requires

a leading segment of the input sequence for initialization computations.4 Hence. real-time applications
with sequential processing must be amenable to delays at the start of a data block to acquire data for

initialization. For real-time applications using batch processing, this is not a problem. The required

computations are straightforward--dot products with real-valued weighting vectors-and the additional
computations are not viewed as a prohibitive handicap.
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2. IIR TRANSIENTS AND INITIALIZATION

Primary attention will be focused on the response of a general second-order filter, understanding
that higher-order filters Can be obtained by cascading. Extension of the solution to cascaded structures is
outlined briefly at the section's end. All filter coefficients are assumed to be real valued; a block diagram

for the conventional direct-form implementation, which is assumed, is provided for reference in Figure 2.

CtO ItA 2-2

X(Z) M(z) -1 M2 z) 1Y(z)7 z
-"13

Figure 2. Conventional direct-form implementation of a second-order 11R digitalfilter: selecting starting values for the
filter memorv registers rn/n) I ( Mz)/ and in, n) J( M, (z)]. the object of 1IR initialization.

2.1 STATE-VARIABLE DESCRIPTION

For a general second-order filter, complex-valued input x = Ix (n): n > - oo} and output Y = {y (n):
n > - -} are related by the defining equation

y (n) = ax (n) + a, x (n-1) + t,x (n-2) - ,,y (n-]) - /3 (n-2)

which correlates with the Z-transfer function definition

A Y(Z) Oa0 + a, ZI +a. 2
H (z)lf~7+iJ

The internal state of the filter section is specified by the vector

Fm (n) M M1(Z)11
m (n)= { (n) M(z)= M2(:)Jj

(refer to Figure 2). and the following state-variable description of the filtering equations follows directly:

M (n) = B M (n-1) + C x (n) (la)

and

v (n) = ATM (n-l) + aox (n) 0b)

3



where

A~ 0 3j B[ oj and CA= al2-a0fl 1

With only a finite-windowed version of the data Ix (n); 0 < n < N) available, the state-transition
equation is written

nM (n) = B"M_ I + I B " C x(k), (2)

k=1

where M. = [ml(-1) m2(-l)]T is the parameter describing the initial state of the filter section. As M is
generally undefined in applications, the goal of IIR initialization is selection of a value M_, that is
appropriate for the filtering application.

The simplest form of initialization is to take = (the null vector), which will be referred to as
zero initialization. In step initialization, M_ = I + 31 + 03-' [x (0) x (0 )] 7 is chosen to eliminate
transient response due to zero-frequency energy.

2.2 COMPLEX-EXPONENTIAL INPUT

Working the problem for complex-exponential input allows solving directly for the transient contri-
bution to the output response. A one-sided Z-transform analysis for a step-modulated' complex-expo-
nential input. x(n) = e°'a'u(n), yields the transient output response (assuming for now that M_, = 0)

yl~)= -H D(eJ(° )AT 16 (0)+ r 1 sin ne B u(n -1 )- rn - 2 sinon - 1)O

De sin e sin 0

Iu (n - 2)]E (eiC°  (3)

where

H D (e J(D = 1 I V ~e J Oa ) = - e _J o

0I - rej (0-'))(1 - re- i lO -j))

and I is the identity matrix. Note that in Equation (3) 0 and r follow from a polar representation for
the filter poles (i.e., P = re-Je) and are related to the filter coefficients by /31 = -2r cos0 and 13, = r ([I1].
pp. 150-162). The vector E (e'") can be viewed as an extension of input samples to times -1 and -2. The
gain HD (e n is from the magnitude response of the all-pole (or recursive) component of the filter.
Because HD (W°J) is determined solely by the filter poles, signal transients can be disproportionately
l,,ger for input energy in the stop-band regions (see Figure 3).

Assuming the processing of short-length data sequences, it is helpful to have an example/characteri-
zation of the transient-response effect, both in the frequency and time domains, to help visualize the
above complex exponential case as well as to provide a basis for hlter comparisons. This effect is

4
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Figure 3. Transfer-function magnitudes for a second-order (high-pass) IIR filter: the frequency magnitude response.
1H el) / , and the denominator response. 1HD(e 'W) / .are both plotted. The denominator response is the response due to

the all-pole ( recursive) portion of the filter.

introduced in Figures 4 and 5, which were derived from the processing of 64-sample complex-exponen-
tial sequences. Input signals were generated with frequencies spanning the range 0 - t radians. Each
sequence was processed by a second-order high-pass IR filter, whose magnitude response is plotted in
Figure 3. The responses in Figure 4 result from zero-initialized processing of the sequences: those of
Figure 5 from step- nitialized processing. Each figure contains time-domain plots of the transient-coripo-
nent magnitude (left side) and periodogram spectral estimates of the entire output sequence (right side).

In the time-domain plots, oscillation near the resonant frequency and a characteristic r" decay are
both evident as functions of sample number. In the zero-initialized case. the magnitude of the transient
response vs. input frequency (the axis going into the page) indicates modulation by I HD(e 0) 1. The step-
initialized case has a similar characteristic, but shows a marked improvement at zero frequency and a
significant magnitude increase for frequencies in the filter's passband.

The periodograms both indicate two primary spectral contributions. one a positive frequency (sweep-
ing the range 0 - t and corresponding to the input-signal frequency) and the other a real sinusoidal
component [energy at both ± 0, see Equation (3)], attributable to the filter's transient response. The
characterization in this figure can be correlated with that presented in Figure 1. in which the average-
output-magnitude frequency response measures the total output energy corresponding to a given sinu-
soidal input. Each spectral analysis includes a projection (onto the Magnitude vs. Input-Frequency plane)
of a component attributable to the transient response. In the case of zero initialization, the shape of
this component is due to weighting both by I HD(elw) I and the geometric decay of r", however, the influ-
ence of I HDe') I is still apparent. For step initialization, this spectral component clearly illustrates
improved performance at zero input frequency but illustrates an -oparent compromise at higher passband
frequencies.

5
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Figure 4. Filtering a short-lengt;. data sequenwe-zero-initialized transient-response characterization: time-do'nain
valucs of the transient-component magnitude (left side) .ind windowed-periodogram (Kaiser weighting) spectral
estimates of the complete 64-point output signal (right side) are plotted. Input signals were sampled complex
exponentials having frequencies in the range 0 to It (plots are indexed with respect to input-signal frequency from
foreground to background). Each input sequence was [,rocessed by a second-order 1IR (high-pass) filter stage (see
Figure 3). All filter mnemory registers were zeroed prior to filtering. Values for the transient-response magnitude are
represented on a linear-magnitude scale: those for the spectral analysis, a log-magnitude scale (values are cypressed
in dB relative to an arbitrarily chosen level). The transient response introduces a signal component with energy
measurable near svstemn resonance. A shaded plot of the spectral componen: near resonance is projected onto the
Magnitude vs. Input Frequency plane.
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Figure 5. Filtering a short-length data sequence-step-initialized transi, it-response characterization: the plots in this
figure are companion plots to those of Figure 4. The description of this figure is the same as in the previous figure, except
that these plots result from processing the data with a step-in itializedfilter. Note: in contrast to the previous figure, there
i.% no transient response corresponding to a zero-frequency input. However, this desired attenuation of the transient
response is quickly lost as the input frequency increases. For input frequencie- in the filter's passband the magnitude
of the transient response is actually greater than in the zero-initialized case,



Continuing the one-sided Z-transform analysis to compute the response to M_1 (i.e., X 0 0, which
also provides the homogeneous-equation solution), the same form as Equation (3) is obtained, as is the
conclusion that M_1=HD (e"') E (e"0) yields Yr (n) E 0 for the case of complex-exponential input. As a
special case, taking ao= 0 results in M_ = (I + f1 + ' 32 [1 1

rjT. which is the step-initialized solution.

The transient response to any step-modulated signal must have the form of Equation (3), because by
direct analogy with the solution of second-order differential systems, the transient response must have
the form of the homogeneous solution to the second-order difference equation. By viewing the transient
component {ytr(n); 0 -n < N ) as an element in an N-dimensional vector space, the conclusion is that the
transient response (for a second-order system) is restricted to a two-dimensional subspace. This also can
be seen in Equation (3) if E (eW) is viewed as an arbitrary 2 x I weighting vector (representing the only
degrees of freedom). Hence, for N sufficiently larger than 2, this constraint on the transient component
may be used to advantage for initialization. This is the basis for the proposed initialization method,
referred to as projection initialization.

2.3 VECTOR-SPACE STTING

Let input and output sequences be viewed as N x I vectors in a complex-valued vector space: X, Y E
C, with Y = [y (0) y () . y (N-I )IT and X = (x (0) x (1) ... x (N-I )IT By componentwise application of

Equations (I) and (2). linear operators F (C2 - C ) and G (c5 - C ') can be defined which describe the
relationship between input. output, and initial conditions:

Y= FM.1 + GX (4)

Specifically. F is the N x 2 matrix

[AT

F ATB

.AT B%-

and G is the N x N lower triangular matrix

ao  0 0 0 0 0

A TC a0  0 0 0 0

ATBC ATC 0 0 0 0

G = ao  0 0 0
A TC a0  0 0

ATBC ATC ao  0

ATBA'-2C ATBA'- 3C ATB 2C ATBC ATC a-

8



In the context of the initialization problem, the filter output can be viewed as being decomposed into
steady-state and transient components: Y = Y + Y , where following from tle previous section Y E5,'; Ir Fr

R(F) (the range of F) can be declared. Ideally, the goal of initialization would be to obtain Yr = 0 ; or,
equivalently, to find an appropriate criterion for minimizing llY 'r. Neither problem can be formulated
directly; it is necessary to work an approximate problem. In particular, the objective is to make the
transient distortion small, or at least reasonable for a practicable filter.

The projection operator [4] PF = F (FTF)-IFT can be used to provide a decomposition for C', and
the output response can be written as the sum of two orthogonal components: Y = (I -P F)Y + PrY. The
orthogonality of the decomposition provides the relation

11112 = II(I-PF)Yll 2 + F )l2

which, because PF is a projector for the transient-response subspace, can also be written

II},112 = II(I-PFY 12 + liPFp. + Yr112

The first term on the right. 11(l - PF )Y, II. does not depend on M_,. If the treatment o _Y + Y II could
be rationalized as an approximation to 11Yr II, an initializing M_- could be selected as the solution to

M-1 = argmin PFY (5)
M_l I C2

Proposition 1. For the second-order IIR filtering problem described above, selecting

_= -(FTF)- I FT GX (6)

ensures that

1 )12. 2

max yn)<_ <  -  f H (eJw)-X (eJ0)-dW0_<n<N -tp

'here 11 • il represents the normal Euclidean norm.

In the case of complex-exponential input, the transient-component magnitude will be proportional
to the filter's overall magnitude response I H (e"J) I instead of the denominator magnitude response
I HD (eiW) I. The most significant consequence is that transients elicited by input-signal energy in the stop
band are greatly attenuated. because the filter's zeros now play a role in determining the transient
response. The next section continues the previous numerical examples and illustrates the improved stop-
band performance.

Proof. The solution to Equation (5) is obtained by solving PY = 0, which, after substituting
Equation (4) and rearranging. becomes FMI = -PFGX. Equation (6) follows, given the definition of Pr
For this choice of M_, we have Y = -PFYss. therefore, using Parseval's relation.

I e g r oea r {I tH (ej m tentX (ej ha o) }

(P., being a projection operator and therefore idempotent. has a spectral normn of 1).

9



2.4 IMPLEMENTATION

Implementation of Equation (6) is straightforward, as the matrix (FTF )-IFTG is completely prede-

termined by knowledge of the filter coefficients. The coefficients of the weighting matrix are all real

valued; the initialization computations only require real-valued dot products between input data and

vectors of weighting coefficients. For a second-order filter, four such multiplications are required; one

each for the real and imaginary components of both memory registers. Once an initialization vector has

been computed, the initialized IIR filter can be implemented using standard methods. Alternatively, the

output Y can also be computed directly by implementing the matrix multiplication Y = (I - P)GX.

Higher-Order Filters: Cascading. For a cascade of second-order sections, repeated application of

Equation (4) can derive a relationship between input and output that is analogous to Equation (4): Y =

FM1 + GX, where

n--I

n
=fHG1.

i=1
k,

HG i Gk Gk l...Gk
i=k I

and F., G., and M L, represent the coefficient matrices and initialization vector for the ih filter stage.

Note that now F is N x 2rI and M-, is 27 x 1. where q7 is the number of second-order stages in the filter.

Correspondingly, the dimension of R(-) will be 2 (assuming no degenerate cases). The initialization

solution here is wholly analogous to the second-order case. and the solution [Equation (6)] applies with

the substitution of M 1 . F,, and G for M_ . F. and G.

10



3. RESULTS

The previous numerical example is completed by including the case of a projection-initialized filter,
i.e., a filter initialized by Equation (6). The characterization is presented in Figure 6. Referring to the
time-domain plots, with projection initialization there is considerable improvement in the stop-band
extent of transient reduction; there is also a reduction in transient magnitude for much of the passband
region as well. Only for input-signal energy near the resonant frequency is there an obvious increase in
transient magnitude. Depending upon the application, this increase may not be significant, as the tran-
sient component is near the resonant frequency, giving rise to a spectral component corresponding to the
input frequency. The accompanying periodogram plots clearly illustrate the motivation for Equation (6).
Viewing the magnitude of the transient-response spectral contribution (vs. input frequency), a modula-
tion by I H (e P) is clearly evident.

TRANSIENT RESPONSE SPECTRAL ANALYSIS
MAGNITUDE

11432-6-- - ----
- - - - ------------------

2 A

00

0 - 41 -90

0 31 630 00

SAMPLE NUMBER SPECTRAL FREQUENCY

Figure 6. Filtering a short-length data sequence-projection -initialized transient-response characterization: the
description of this figure is the same as that of Figure 4. except that the data were processed with a projection -initialized
filter, In comparison to FigureS5, there is significant attenuation of the transient-component magnitude throughout most
of the stop band and for a large portion of the passband as well. The magnitude of the transient- response spectral
component indicates modulation byN the filter's frequencyi-response magnitude. This is in contrast to the two prev'ious
cases where the denominator response modulates the transient-response energy.

3.1 INITIALIZATION FROM PARTIAL OBSERVATIONS

To this point it has been assumed that all data to be filtered are used for initialization-, this need not
be the case. For data processed sequentially (as opposed to batch) this usually cannot be achieved.

/ / /I 11



However, if the sequential processing can afford a delay of a number of data samples. initialization based
on these data can be used. Figure 7 summarizes the effect of initialization sample size by plotting
magnitudes of the transient-component spectral contributions for partial observation sets of 64. 48. 32.
and 16 samples. The top plot for 64 samples, the entire data set, corresponds to the shaded (oblique) plot
in Figure 6. Each panel also contains a plot of the corresponding magnitude for the zero-initialized case

(see Figure 4). These results show that the method is still exceptionally effective at reducing the tran-
sients in response to input energy near the filter zero.

161432.7

-20

-40

"0 0. . ............°....... ......... °............

-20

V. -40

48 SAMPLE
-20

-40

-20

-40
16 SAMPLE

0 n/2

INPUT FREOUENCY

Figure 7. Initialization using partial observations-spectral magnitude at system resonance vs. input frequency:
spectral magnitude at resonance is plotted vs. input frequency. The plots are derived, as in Figure 6. from projection-
initialized high-pass filtering of 64-point input sequences. Four panels are illustrated corresponding to using the first
64, 48. 32. or 16 samples for initialization computations. The top panel, 64 samples, uses all available data and is the
same as the oblique projection shown in Figure 6. For reference, each panel also contains a plot of the spectral magnitude
corresponding to zero-initialized processing. Attenuation of the transient response for frequencies near the filter zero
is well preserved.

12



3.2 AVERAGE-OUTPUT-MAGNITUDE RESPONSE

Referring to the four-pole example of Figure 1, a plot of the average-output-magnitude response for
the projection-initialized filter is presented. Figure 8 reproduces the magnitude response of the filter and.
for reference, the step-initialized results. Clearly, the projection-initialized filter demonstrates a much
improved performance throughout the stop-band region. In contrast, however, there is a greater rounding
of the transition to the passband, due to increased cancelling in the region of filter resonance.

161432-8

40 MAGNITUDE RESPONSE

SAMPL SAMPLES
32-63

0 n /4 nL/2

INPUT FREQUENCY

Figure 8. The a ic rage -oItpuit-miagnide frequienc response of a four-pole elliptic IR filter-projection-initialized

results:. the exam pie of Figure 1 is completed wvith the resilts for projectiont-iniitialized filteriig. The figure description
isrhe samneas inFigure 1. except that the zero- initialized results are not repeated and dotted lines are now used for the
step- initialized results. The projection -initialized results. dashed lines. fiollows the steadv-state stop-band perfimnance.
The response nearfilter resonance is more rounded, however, due to a larger transient response and cancellati .on at thest,
.frequencies (see Figulre 6).

13



4. CONCLUSIONS

The transient response that occurs at the start of an IIR filtering pass usually results in the discarding
of usable data to allow for IIR transient decay. In practical applications, much of the difficulty with
transients stems from their disproportionately large magnitude in response to input energy in stop-band
regions. This occurs because the transient response magnitude is determined by the filter poles. Projec-
tion initialization, which takes into account the location of the filter zeros, was shown to significantly
reduce the transient-response magnitude in response to input energy near the filter zeros. Hence, regard-
ing the filtering of short-length data sequences, the method can improve the effective stop-band perform-
ance of an IIR filter and substantially reduce the amount of data discarded.

The derivations and comparisons presented are based on a standard second-order filter definition:

extension to higher-order filters was demonstrated by cascading. This does not imply that the method
only works for even-ordered filter structures. Odd-ordered filters can be dealt with by placing the odd
stage in second-order form (with some degenerate coefficients). The solutions presented can apply if a
generalized inverse interpretation is applied to the solution.

Because the method requires an initial segment of data, it is ideally suited for applications where

data is processed in batch mode. Sequential data processing can be accommodated only when delays at
the beginning of a processing block can be tolerated. However, the method can improve performance.
using only a small initial segment for the initialization computations.
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